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Abstract

Down syndrome (DS) is a genetic disorder caused by trisomy of chromosome 21. Abnormali-

ties in chromosome number have the potential to lead to disruption of the proteostasis network

(PN) and accumulation of misfolded proteins. DS individuals suffer from several comorbidities,

and we hypothesized that disruption of proteostasis could contribute to the observed pathol-

ogy and decreased cell viability in DS. Our results confirm the presence of a disrupted PN in

DS, as several of its elements, including the unfolded protein response, chaperone system,

and proteasomal degradation exhibited significant alterations compared to euploid controls in

both cell and mouse models. Additionally, when cell models were treated with compounds

that promote disrupted proteostasis, we observed diminished levels of cell viability in DS com-

pared to controls. Collectively our findings provide a cellular-level characterization of PN dys-

function in DS and an improved understanding of the potential pathogenic mechanisms

contributing to disrupted cellular physiology in DS. Lastly, this study highlights the future

potential of designing therapeutic strategies that mitigate protein quality control dysfunction.

Introduction

Down syndrome (DS) is a genetic disorder resulting from the triplication (whole or part) of

chromosome 21 (Hsa21)[1]. While DS is a form of aneuploidy in humans, it is the only tri-

somy that does not result in embryonic or early life lethality [2]. Chromosome missegregation

has been shown to lead to increased mRNA production and excessive protein formation; thus,

linking aneuploidy with a disruption of the proteostasis network and the production of proteo-

toxic stress [3, 4]. Due to trisomy 21, the DS population is characterized by a variable pheno-

type with several comorbidities. These comorbidities include seizures [5, 6], leukemia [7],

vision problems [8], thyroid dysfunction [9], diabetes [10] and dementia, specifically early

onset Alzheimer’s disease (AD) [11]. Lastly, errors in protein homeostasis are proposed as can-

didate mechanisms related to the pathology of the aforementioned comorbidities [12–20].
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Protein homeostasis, or proteostasis, refers to the correct function and balanced abundance

of the cellular proteome. The proteostasis network (PN) is the system responsible for main-

taining the stability and integrity of the proteome. Synthesis of proteins, as well as proper pro-

tein folding, repair/disaggregation, and clearance/degradation are major components of the

PN (Fig 1). The PN includes the ribosome, molecular chaperones, and degradation machinery

involved in the proteasome and autophagy [21]. In addition, there are several PN modulators,

like the unfolded protein response (UPR) and the transcription factor heat shock factor-1

(HSF-1), that modify the PN, and disruption or alteration of these modulators can lead to the

distortion of the PN architecture [22, 23]. Finally, malfunction of the PN has been proposed as

an etiologic factor for the promotion of certain diseases, as PN imbalance leads to misfolded

protein accumulation and proteotoxic stress [24].

Since alterations in the PN occur in various pathological conditions, e.g. diabetes, AD,

vision-related defects, thyroid dysfunction, and epilepsy, we hypothesized that, due to the pres-

ence of these comorbidities in the DS population, cells from DS individuals will display a dys-

functional PN. Also, the burden of trisomy, mediated by gene dosage effects [25], has the

potential to disturb proteostasis by overwhelming the cellular translational quality control

mechanisms, that over time would act as a mechanism to promote disease pathology and

decrease cell viability. Consistent with our hypothesis, we observed several components of the

protein quality control machinery in DS cell models to be dysfunctional compared to euploid

controls. Furthermore, treatment with stressors that disrupt the PN resulted in decreased cell

viability in DS cells compared to controls. Our basic findings from this characterization sug-

gest that therapeutic strategies, designed to alleviate dysfunction of the PN, will promote clear-

ance of misfolded proteins, potentially resulting in significant therapeutic outcomes in the DS

population.

Materials and methods

Reagents and antibodies

Maneb (Product number 45554) and tunicamycin (Product number T7765) were purchased

from Sigma-Aldrich. 4μ8c (Product number 412512) was purchased from EMD Millipore. All

other reagents were purchased from Fisher-Scientific. The following primary antibodies were

purchased from Cell Signaling Technology: XBP1s (D2C1F) (12782), ubiquitin (3933), phos-

pho-eIF2α (Ser51) (9721), eIF2α (9722), IRE1α (3294), HSP40 (4871), HSP70 (4872), HSP90

(4877). The following primary antibodies were purchased from Abcam: ATF6 (ab122897), and

XBP1 (ab37152). The primary antibody against phospho-IRE1α (Ser724) was purchased from

Novus Biologicals. The primary antibody against HSP27 was purchased by Enzo Life Sciences

(G3.1). The primary antibody against β-actin (A5441) was purchased from Sigma-Aldrich.

Cell culture

Lymphoblastoid cell lines (LCL), immortalized using the Epstein-Barr virus [26], were

obtained from the Intellectual and Developmental Disabilities Research Center (IDDRC)

Nexus (Colorado Multiple Institutional Review Board (COMIRB) #08–1276) in the Depart-

ment of Pediatrics at the University of Colorado Anschutz Medical Campus. LCLs from three

DS patients were used (female, 18.4 yrs old; male, 18.3 yrs old; female, 7.9 yrs old) and three

non-DS, age-matched controls were used as euploid controls (CTL) (female, 17.9 yrs old;

male, 16.4 yrs old; female, 7.5 yrs old). The LCLs were cultured in RPMI 1640 medium con-

taining L-glutamine, 15% FBS, and 1% antibiotic/antimycotic solution. For mechanistic stud-

ies, we utilized human fibroblasts derived from the foreskin of DS and euploid patients.

Detroit 551 (CCL-110), a disomic cell line used as euploid control (CTL) in our experiments,
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and Detroit 539 (CCL-84), a trisomic cell line derived from a DS patient were purchased from

ATCC. The CCL-110 cell line was cultured in EMEM medium supplemented with 10% FBS,

1% antibiotic/antimycotic solution. The CCL-84 cell line was cultured in EMEM medium with

10% FBS, 1% antibiotic/antimycotic and 0.1% lactalbumin.

Animal tissues

Wild type (WT), Dp(16)1Yey/+ (DP16), Dp(17)1Yey/+ (DP17) (n = 3/strain) were obtained

from the Linda Crnic Institute for Down Syndrome. All animal functions were governed by

protocols approved by the University of Colorado Institutional Animal Care and Use Commit-

tee. The animals were all males and aged approximately 10–12 weeks. Upon receipt of the ani-

mals from the animal core, they were euthanized via CO2 inhalation and cervical dislocation.

Tissues were harvested immediately and flash frozen in liquid nitrogen. Approximately one

complete hemisphere of the brain was homogenized in RIPA buffer containing Halt Protease

and Phosphatase Inhibitor cocktail (Fisher Scientific). Samples were aliquoted and stored at

-80˚C until use. Protein concentration of each sample was determined using a BCA assay

(Fisher Scientific).

Fig 1. A simplified schematic illustrating the three major functions of the proteostasis network (Blue), and the key modulators (Red), UPR and

HSF-1.

https://doi.org/10.1371/journal.pone.0176307.g001
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Quantitative real-time PCR (qPCR)

RNA was extracted from DS and euploid control LCLs using an RNeasy mini kit (Qiagen).

RNA (2 μg) was reverse transcribed to cDNA using iScript Advanced cDNA Synthesis Kit

(Bio-Rad). For qPCR, approximately 200 ng of cDNA was utilized. PrimePCR Sybr Green

assays were purchased from Bio-Rad for the following genes: GADD153, ATF6, GADD34,

CNE, HSPA5, HSP90B1, XBP1, and PDIA3. HPRT1 was utilized as a loading control. Samples

were analyzed using a CFX Connect 96-well real-time PCR detection system (Bio-Rad) as per

manufacturer’s protocols.

Detection of reactive oxygen species

To determine superoxide production, untreated LCLs were stained with reagents contained in

the Muse Oxidative Stress kit (Cat # MCH100111, Millipore) and fluorescence was detected

using a Muse Cell Analyzer (Millipore) as per manufacturer’s protocol. Hydrogen peroxide

production was determined in untreated LCLs utilizing a Total Reactive Oxygen Species

(ROS) assay kit (Cat # 88-5930-74) from eBioscience as per manufacturer’s instructions.

Isolation of nuclear and cytosolic fractions

To isolate nuclear and cytosolic fractions from CTL and DS fibroblasts, the NE-PER nuclear

extraction kit (Thermo Scientific) was used as per manufacturer’s protocol. Briefly, CCL-110

and CCL-84 cells were grown on 100mm culture plates and allowed to achieve 70–90% conflu-

ence. The cells were then dissociated from the plate using 0.25% trypsin with EDTA. The cells

were then pelleted by centrifugation and washed twice with phosphate buffered saline. The

washed cells were pelleted again and the nuclear extraction procedure was commenced follow-

ing the manufacturer’s protocol.

Western blotting

20–40 μg of each protein lysate was separated via SDS-PAGE utilizing a 10% polyacrylamide

gel. Proteins were transferred to nitrocellulose membrane using the Bio-Rad Trans-Blot semi-

dry transfer apparatus. Blocking was performed for 20 min using 5% nonfat dried milk in

TBS-0.1% Tween (TBS-T). Primary antibodies were diluted 1:1000 in TBS-T containing 10%

Super Block T20 (Thermo Scientific) and incubated with the blot overnight at 4˚C. After three

washes for 10 min in TBS-T, the blot was incubated with a horseradish peroxidase (HRP)

-conjugated secondary antibody at 1:5000, diluted in TBS-T containing 10% Super Block T20.

Clarity Western ECL Substrate (Bio-Rad) was used to detect the HRP of the secondary anti-

body. Imaging was performed on the ChemiDoc MP imaging system and Image Lab software

(Bio-Rad). These experiments were conducted in at least three independent replications, and

the image is a representative sample.

Proteasomal activity assessment

Proteasomal activity was assessed as previously described [27] by measuring the fluorescence

of three different fluorogenic peptides that serve as proteasomal enzyme substrates (chymo-

trypsin-like activity (UBPBio: Cat. # G1100,G1101), caspase-like activity (Calbiochem: Catalog

number 539141) and trypsin-like cleavage activity (Peptide Institute, Inc.: Catalog Code Num-

ber: 3140-v). Briefly, cells were harvested in assay buffer containing 50mM Tris-HCl (pH 7.5),

250mM sucrose, 1mM dithiothreitol, 5mM MgCl2, 2mM ATP, 0.5mM EDTA, and 0.025% (w/

v) digitonin, and centrifuged at 10,000xg for 14min. Supernatants were assayed from protein

concentration using a BCA assay. Proteasome activity was determined by incubating 20μg
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protein with 100μM fluorogenic peptide in assay buffer (total volume—200μl per reaction) for

30min at 37˚C. The reaction was halted by the addition of 200μl of ice-cold ethanol (100%)

and the reactions were centrifuged for 4min at 10,000xg. Supernatant was transferred to a

black, 96-well plate and fluorescence (Ex. 380nm, Em. 460nm) was measured using a fluores-

cent plate reader (Molecular Devices). All samples were analyzed using at least 3 analytical rep-

licates and the assay was conducted at least twice for reproducibility.

Cell viability assay

For the evaluation of cell viability, CTL and DS fibroblasts were plated in a 96-well plate

(10,000 cells per well) and allowed to recover and adhere overnight. Cells were treated with

increasing concentrations of maneb (MB) or tunicamycin (Tm) for 24h. After the 24h treat-

ment, a WST-1 colorimetric assay (Roche, Product number: 05015944001) was used to assess

cell viability as per the manufacturer’s protocol. A SpectraMax 190 microplate reader (Molecu-

lar devices, Sunnyvale CA, USA) was used to read the absorbance at 450nm.

Immunocytochemistry

CTL and DS fibroblasts were seeded onto coverslips and allowed to adhere and recover for 16h.

The coverslips were then placed into individual wells of a 6-well plate for treatment. Cells were

then treated for 24h with vehicle (DMSO) or proteasome inhibitor (MG132, 5μM). Upon com-

pletion of the treatment, cells were fixed with 4% (v/v) paraformaldehyde in PBS and antigens

were retrieved using 0.1% (v/v) triton-X 100 in PBS. Cells were then blocked for 30 minutes at

room temperature using a 1:1 mixture of TBS-T and complete culture medium (EMEM, 10%

FBS, 1% penn/strep). Slides were then incubated with a primary antibody against ubiquitin

(Cell Signaling Technology, 3933) overnight at 4˚C. The coverslips were then gently washed 3

times using TBS-T followed by incubation with a TRITC-labeled secondary antibody and DAPI

(1μg/ml) for 1h in the dark at room temperature. Coverslips were washed 3 times in TBS-T,

dipped in distilled water then mounted on slides using SuperMount (BioGenex) and allowed to

dry. Cells were imaged using a Nikon TE2000 microscope with a Nikon C1 confocal imaging

system. Each coverslip was imaged ten times (ten different fields) and this experiment was con-

ducted in three independent trials for a total of 30 images/fields per treatment and genotype.

Analyses of the confocal images were performed as per Orlicky et al [28]. Briefly, TIFF images

were captured in RGD and the ICC signal of ubiquitin was quantified in these images using the

3I Slidebook program (3I, Denver, Colorado). Similarly, the signal from the DNA bound DAPI

dye was also quantified. Data is presented as the ICC signal normalized to the quantity of DNA

present.

Statistics

Data is represented as the mean ± standard error of the mean (SEM). All experiments were per-

formed in duplicate or triplicate. Data were analyzed and graphs were plotted using GraphPad

Prism 6. Statistical significance was determined using unpaired t-test and a P-value of<0.05

was deemed to be significant (� P<0.05; �� P<0.01; ��� P<0.001; ���� P<0.0001).

Results

Lymphocytes from DS patients elevated basal reactive oxygen species

production and increased expression of ER stress-related genes

DS is a “whole body” condition that involves multiple comorbidities that impact nearly all

body systems [29–32]; therefore, we chose to employ two different cell culture models of cells
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that can be obtained from DS individuals in a relatively non-invasive manner, lymphoblastoid

cells (LCL) and skin fibroblasts. The presence of basal oxidative stress is a common observation

in DS [33–35], and this was confirmed in our LCL model by measuring hydrogen peroxide and

superoxide production in unstimulated cells (Fig 2A). DS cells displayed a significant increase

in hydrogen peroxide production, while no significant change in superoxide was observed. The

enhanced hydrogen peroxide production in the DS cells is potentially attributable to the ele-

vated levels of SOD1 protein present in these cells [36, 37], which converts superoxide to hydro-

gen peroxide. Additionally, reactive oxygen species can damage cellular macromolecules, e.g.

proteins, and it is known that oxidative damage to proteins can result in misfolding and altered

proteasomal degradation; therefore, cells from DS individuals may display alterations to the PN.

To examine this possibility we measured the mRNA expression levels of several UPR-related

genes in LCLs derived from DS individuals (Fig 2B) versus euploid controls. Consistent with

our hypothesis, our data show a modest, but significant up-regulation in the expression of

UPR-related genes (CHOP, ATF6, XBP1, PDI, GRP78, GRP94, CNE). We also investigated the

ability of DS cells to activate UPR using the thiol-reactive fungicide maneb as an UPR inducer.

These results demonstrated that DS cells, in addition to having elevated basal markers of UPR,

can adequately induce Grp78 and XBP1s abundance and eIF2α phosphorylation (S1 Fig). Col-

lectively, these data indicate that cells from DS patients exhibit constitutive induction of the

UPR, increased basal levels of oxidative stress, and are capable of stress-induced UPR

activation.

XBP1s protein abundance is elevated in DS cells and DP16 mice

The gene expression study described above indicated that DS cells exhibit enhanced basal lev-

els of UPR. Because of this observation, we sought to investigate any DS-mediated difference

in the abundance of various UPR proteins. We evaluated all three major arms of UPR using

LCLs from three different DS individuals and age-matched controls, as well as commercially

available DS (CCL-84) and euploid control (CCL-110) skin fibroblasts. These studies revealed

no significant differences in the phosphorylation state or abundance of eIF2α, as well as no sig-

nificant difference in basal GRP78 abundance (Fig 3A and 3B). It should be noted that GRP78

abundance was increased in DS LCLs, but not fibroblasts, indicating a possible cell type-spe-

cific difference. However, we did observe an increased abundance of the activated form of X-

box binding protein 1 (XBP1s) in the DS cells compared to euploid controls (Fig 4A and 4B).

Fig 2. LCLs from DS patients enhanced basal levels of ROS production (A) and expression of ER

stress genes (B). Unstimulated DS and CTL LCLs were evaluated for basal superoxide and hydrogen

peroxide production using flow cytometry. These unstimulated cells were also assessed for ER stress gene

expression using qRT-PCR. N = 3; * P<0.05; ** P<0.01; *** P<0.001; **** P<0.0001.

https://doi.org/10.1371/journal.pone.0176307.g002
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Since XBP1s is a transcription factor, it’s increased splicing would imply increased nuclear

localization in DS versus euploid controls. When examined, we did observe a greater abun-

dance of XBP1s in the DS nucleus compared to euploid controls (Fig 4C). In an effort to exam-

ine the significance of our XBP1s expression data, we investigated the abundance of XBP1s in

the brains of WT, and two segmental trisomy models of DS, DP16 and DP17 mice. Due to the

fact that the orthologous genes located on Hsa21 are located on mouse chromosome 10, 16

and 17, segmental trisomy models have been created that are segmental trisomy for the genes

located on mouse chromosome (Mmu) 10 (41 Hsa21 orthologs), Mmu16 (115 Hsa21 ortho-

logs), and Mmu17 (19 Hsa21 orthologs) [38]. As described in the Materials and Methods sec-

tion, one complete hemisphere of the brain was homogenized and analyzed via Western

blotting; therefore, these results correspond to whole brain and not a specific brain region. The

Fig 3. Grp78 and the PERK-eIF2α pathway are not basally up-regulated in DS LCLs or fibroblasts.

Western blot analyses in both LCLs and fibroblasts from DS and euploid controls did not show a difference in

either basal Grp78 abundance (A) or abundance and phosphorylation status of eIF2α (B).

https://doi.org/10.1371/journal.pone.0176307.g003
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total protein abundance of XBP1s in both DS mouse models was significantly increased (Fig

4D and 4E) and is consistent with the data obtained from human DS cell lines.

IRE1α hyperphosphorylation is not responsible for the elevated

abundance of XBP1s

Phosphorylation of IRE1α activates the cytoplasmic endonuclease domain of IRE1α, leading

to XBP1u mRNA cleavage to XBP1s, resulting in the expression of an active transcription fac-

tor [39]. Therefore, in an effort to understand the mechanism by which DS cells up-regulate

the abundance of XBP1s protein we evaluated the phosphorylation state of IRE1α. Data pre-

sented in Fig 5A and 5B show that DS LCLs do not display increased IRE1α phosphorylation

compared to controls; however, DS fibroblasts did display increased IRE1α phosphorylation

compared to controls. To further investigate the role of IRE1α in this study, we treated CTL

Fig 4. LCLs and fibroblasts from DS patients and mouse models of DS display increased abundance of

XBP1s and XBP1s was found localized to the nucleus. Unstimulated LCLs and fibroblasts from DS individuals

and age-matched controls were examined for XBP1s abundance using Western blot (A-C). Both DP16 and DP17 (D)

mice display significant increase in XBP1s abundance in the brain (E). Western blots were conducted in triplicate and

the images are representative of these replications. WT, wild type; TG, transgenic (DP16 or DP17); n = 3, * P<0.05.

https://doi.org/10.1371/journal.pone.0176307.g004
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and DS fibroblasts with the small molecule inhibitor of the IRE1α endonuclease, 4μ8c, for 24h

and performed Western blots to determine the abundance of XBP1s. Fig 5C shows that this

inhibitor did not alter the abundance of XBP1s in DS cells, indicating a possible alternative

route for XBP1 mRNA splicing or an enhanced half-life of this protein in DS cells possibly due

to proteasomal dysfunction or an unknown posttranslational mechanism. It should be noted

that Rutkowski and colleagues have recently shown that XBP1 mRNA splicing can be nega-

tively impacted in a condition of chronic ER stress in the liver [40]; however, regulated IRE1α
dependent decay (RIDD) was still active in these hepatocytes, potentially indicating alternate

avenues for RNA splicing and UPR signaling. Due to these variable and potentially cell type

specific responses, we hypothesized that additional mechanisms must be responsible for the

observed increase in XBP1s abundance.

Increased activation to ATF6 may be responsible for increased

expression of XBP1s

The XBP1 gene is reported to be a downstream target of ATF6 [41] and this transcription fac-

tor could conceivably be a mechanism for XBP1 gene induction observed here (Fig 2 and Fig

4). Similar to XBP1s, upon release of ATF6 from the ER and cleavage in the Golgi, the protein

is translocated to the nucleus. Western blot analyses of patient-derived LCLs and fibroblasts

showed that DS cells possess a greater amount of cleaved/activated (50kD fragment) ATF6

protein (Fig 6A), a robust increase in ATF6 nuclear localization in unstimulated DS cells (Fig

6B), and these alterations were found to be statistically significant when compared to euploid

controls (Fig 6C). These data suggest that DS-mediated ATF6 activation may be responsible

for the increase in XBP1s protein in DS cells.

DS fibroblasts display impaired induction of chaperones in response to

moderate heat stress

In addition to modification by induction of UPR, the PN also includes greater than 300 chap-

erone genes that make up the chaperome [42]. These genes are charged with assisting in

Fig 5. Phosphorylation of IRE1α does not differ greatly between cells from DS and euploid controls.

Three pairs of DS and CTL LCL, as well as one pair of DS and CTL fibroblasts, were analyzed for basal levels

of IRE1α phosphorylation (A). These data show that LCLs did not display a clear DS-mediated phenotype,

while the fibroblasts showed a DS-mediated increase in phosphorylation (B). Inhibition of the IRE1α
endonuclease domain with 4μ8c did not significantly decrease XBP1s abundance in DS fibroblasts (C).

Western blots were conducted in triplicate and the images are representative of these replications.

https://doi.org/10.1371/journal.pone.0176307.g005
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protein folding and mediating solubility and function of much of the proteome [43]. Due to

the observation of basal activation of UPR in DS cells, we next investigated the basal levels of a

small sample of chaperone proteins and the response of DS and CTL fibroblasts to moderate

heat stress (40˚C). Fig 7A shows that CTL and DS cells possess similar abundance of Hsp90,

Hsp70, and Hsp40; however, the basal abundance of Hsp27 was found to be significantly

decreased in DS compared to CTL. Upon stimulation of these CTL and DS cells with 40˚C

heat stress for 2 hours, it was discovered that cells from DS individuals do not respond in a

manner similar to that of the CTL (Fig 7B). Thus, in addition to elevated UPR, cells from DS

individuals have a severely blunted or absent response to moderate heat stress and do not

induce chaperone proteins in a manner similar to CTL.

DS fibroblasts exhibit increased protein ubiquitination and disrupted

proteasome activity

Protein degradation is an extremely important component of the PN that eliminates unfolded

or denatured proteins, controlling cellular homeostasis [44, 45]. For example, if proper folding

does not occur, misfolded proteins are polyubiquitinated and degraded by the 26S proteasome

[46]. After observing increased basal levels of UPR and impaired heat shock response in DS

cells, we next investigated the ability of control and DS fibroblasts to ubiquitinate and degrade

proteins. Immunocytochemical analyses of vehicle (DMSO) and MG132-treated (5μM) fibro-

blasts showed that immunostaining for ubiquitin was greater in vehicle treated DS vs CTL

cells (Fig 8A) and quantification of these images showed a significantly greater abundance of

ubiquitinated proteins in these DS cells (Fig 8B). MG132 treatment greatly increased ubiquitin

staining in both DS and CTL cell lines; however, 24 hours of accumulation did not yield a sta-

tistically significant difference when comparing CTL to DS. We next evaluated a time course

of MG132-mediated accumulation of polyubiquitinated proteins in both DS and euploid con-

trol fibroblasts (Fig 8C). These data show that DS cells not only possess a higher abundance of

polyubiquitinated proteins, but inhibition of the proteasome by MG132 resulted in greater

Fig 6. LCLs and fibroblasts from DS patients show increased ATF6 cleavage (A) and increased

nuclear localization (B) compared to euploid controls. Both DS LCLs and fibroblasts displayed increased

ATF6 cleavage, as evidenced by the presence of a band located at approximately 50 kD (arrow). Significantly

increased ATF6 cleavage and nuclear localization was observed in the DS cells compared to euploid controls

(C). Western blots were conducted in triplicate and the images are representative of these replications.

https://doi.org/10.1371/journal.pone.0176307.g006
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accumulation of these proteins in the DS cells, and at earlier time points, when compared to

CTL cells (S2 Fig). Due to these observations of increased protein ubiquitination/accumulation

in the DS cells, we next investigated the proteolytic function of the proteasome. Fig 8D clearly

shows that DS fibroblasts possess significantly lower chymotrypsin-like and trypsin-like pro-

teolytic activity compared to CTLs. Additionally, we did not observe any DS-mediated alter-

ation in caspase-like activity of the proteasome. These observations indicate that DS cells have

errors in protein folding that should promote protein degradation; however, the proteasome

of DS cells is unable to effectively degrade these misfolded proteins. Together, these data indi-

cate a disruption of the PN in DS and a tangible mechanism for some of the cellular pheno-

types observed in this syndrome.

DS cells display enhanced loss of viability when treated with ER

stressors

The PN is dynamic and must work to strike a balance between protein production and protein

turnover, clearing misfolded and aggregated proteins, and must be stress responsive. Decline

or disruption of this network is associated with aging and diseases of aberrant protein folding

and aggregation [44] with the prediction that a decline in the capacity of the PN can have far-

reaching and toxic consequences [45]. Due to these observations, we next compared the

impact of compounds that affect the PN on cell viability in DS and euploid control fibroblasts.

Fig 9 clearly illustrates that DS cells are more sensitive to the toxic effects of the ER stressor

compounds tunicamycin (glycosylation inhibitor) (Fig 9A) and maneb (proteasomal inhibitor

[47], thiol-modifying fungicide [48]) (Fig 9B). These data show that impairment of the PN in

DS cells renders them vulnerable to cell death when the PN is further challenged, contributing

in turn to cell loss and various comorbidities associated with DS.

Fig 7. Impaired heat shock response in DS fibroblasts. Basal levels of most heat shock proteins (Hsp)

investigated were not significantly different controls; however, Hsp27 was significantly decreased in DS cells

(A). Stimulation of these cells for 2h with 40˚C heat stress did not result in a significant increase in Hsp90 or 70

(B). These results indicate an abnormal HSF-1 response in DS fibroblasts. Graphs represent results of

Western blotting experiments that were conducted in triplicate. Data is represented as the mean ± SEM

(*P<0.05, ****P<0.0001).

https://doi.org/10.1371/journal.pone.0176307.g007
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Discussion

DS is a genetic condition caused by the presence of three copies of chromosome 21. This geno-

mic imbalance renders the DS population vulnerable to developing several comorbidities at a

Fig 8. DS cells display an increased abundance of ubiquitinated proteins and impaired proteasomal function.

Untreated fibroblasts from DS and CTL were stained for ubiquitinated protein and visualized using fluorescent

microscopy (A). The amount of basal ubiquitin staining was found to be significantly increased in DS fibroblasts

compared to CTL (B), indicating increased load of misfolded proteins in DS cells. Western blot analyses after treatment

with the proteasomal inhibitor, MG132 (5μM), show a more rapid increase in polyubiquitinated proteins (C) in DS

compared to CTL. Further investigation of proteasomal activity demonstrated that in DS fibroblasts there are significant

decreases in both chymotrypsin-like and trypsin-like activity of the proteasome (D). N = 3, * P<0.05, ** P<0.01; ***
P<0.001.

https://doi.org/10.1371/journal.pone.0176307.g008

Fig 9. Cell viability in DS cells is altered to a greater extent due to exposure to ER stressors compared

to CTL. Cells were treated for 24h with Tm (A) or MB (B) and cell viability was assessed using a WST-1

assay. N = 3–4, * P<0.05; ** P<0.01; *** P<0.001.

https://doi.org/10.1371/journal.pone.0176307.g009
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higher percentage than non-DS population. An epidemiological study concluded that the inci-

dence risk ratio (IRR) for new onset of eye disorders, hypothyroidism and diabetes, of DS indi-

viduals compared to CTL, was increased (3.1, 13.1 and 1.3 respectively) during childhood in

DS. Also, in DS adulthood, the IRR for epilepsy and intellectual disability is increased to an

even greater level compared to other comorbidities (15.2 and 158 respectively)[49]. Previous

reports in the literature describe a dysfunction of PN components and modulators as being

associated with the above comorbidities. Considering the fact that aneuploidy causes alter-

ations to the proteome [50], this inspired our interest in investigating the protein quality con-

trol system in DS cell models.

Although a significant amount of research regarding gene expression in DS models exists

[51], information about the maintenance of the proteome in DS is scarce. Reports regarding

protein expression in DS [50, 52, 53] provide valuable, but limited, insight into protein quanti-

fication and oxidative posttranslational modifications. An important conclusion from these

reports is that the increased gene expression is not always accompanied by an increase in pro-

tein level, and this conclusion highlights greater need for future DS proteomic investigations.

For example, we have presented gene expression data indicating activation of multiple arms of

the UPR; however, further investigation into protein abundance and phosphorylation status

did not yield similar results. Interestingly, Dephoure and colleagues (2014), using yeast models

of aneuploidy and quantitative proteomic techniques, demonstrated a disconnect between

observed mRNA level and protein abundance. Specifically, these researchers showed that, in

aneuploidy, there is a large, statistically significant number of proteins whose abundance did

not exactly correlate with the observed mRNA level [50], which is in line with the data pre-

sented here.

A major modulator of the PN that is also involved in the pathology of several comorbidities

that appear in the DS is UPR induction. Although there is significant literature describing the

role of UPR in AD [54], reports that investigate this significant cell response in DS are lacking.

Our data show a modest, yet significant increase in the gene expression of a majority of UPR-

related genes. Their transcriptional increase indicates the presence of dysfunctional proteins

due to misfolding in DS lymphocytes and fibroblasts, and is also a marker of the cell’s attempt

to “fight back” in this scenario as shown in previous research [55, 56]. It should be noted that

this gene expression data implies that multiple arms of the UPR are activated. For example,

expression of CHOP was approximately 2.5-fold greater in DS cells compared to euploid con-

trols, potentially indicating activation of the PERK-ATF4 arm of UPR. However, CHOP has

been referred to as a “cross-roads for multiple signal transduction pathways” [57], and this

gene has been reported to be a target of many transcription factors other than ATF4 like AP-1,

ETS-1, p53, and ATF6 [57–59]. Lastly, alterations in expression of genes involved in UPR were

recently shown to be dysregulated by chronic stress by the Rutkowski laboratory [40].

Although not all of the UPR-related genes were increased in the DS cell models at the pro-

tein level, the elevated abundance of XBP1s and ATF6 activation support the existence of a

chronic UPR in our cell models of DS. ATF6 is a critical regulator of ER quality control in

higher eukaryotes, and its activation has been reported to be an adaptive measure that is essen-

tial for the cell to respond to chronic stress [60, 61]. Additionally, up-regulation of XBP1s pro-

tein abundance and/or activation of ATF6 in the absence of other UPR markers have been

observed by other investigators [62–65], validating our results. The role of XBP1s in dementia

is of high significance as it has been shown to exert a protective effect by regulating brain-

derived neurotrophic factor (BDNF), which is involved in memory processes [66]. XBP1s has

also been shown to regulate the expression of ADAM10, an α-secretase that cleaves β-amyloid

and generates non-toxic species [67]. These reports suggest that XBP1s overexpression

observed in DS models might be an attempt of DS cells to either protect themselves against
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toxic β-amyloid species produced as a result of APP overexpression [68], or as a protection

against the lack of neurotrophic factors, also observed in DS models [69, 70]. A similar induc-

tion of UPR has also been observed in cataracts [71], epilepsy [72], hypothyroidism [73] and

diabetes [74]. Lastly, the presence of an UPR and the appearance of these comorbidities in the

DS population raises the question of whether there is a link between enhanced levels of UPR in

DS and the increased risk of developing these comorbidities in DS individuals.

Work in yeast models has shown that cells carrying an extra chromosome exhibit dysfunc-

tional protein quality control leading to proteotoxic stress [75]. Authors have proven that genes

from an extra inserted chromosome produce both increased transcripts and proteins, and attri-

bute proteotoxic stress to this aberrant transcription and/or protein production. Although dif-

ferent models, increased transcription of genes, in response to the presence of increased Hsa21

genes, have been previously shown in DS [25]. Although chromosome number was not directly

measured, the cells used in this work having originated from DS individuals, serve as a potential

link between aberrant protein production and alterations in chromosomal numbers, being the

prime candidate mechanism of the PN dysfunction we have observed. This scenario may also

explain the hypothesis that elevated APP gene expression leads to increased β-amyloid produc-

tion and a link between the early-onset AD pathology developing in DS individuals. The work

of Perluigi and colleagues further support [76] a tight relationship between protein oxidation

and dysfunctional protein degradation systems. Our work, a report of PN dysfunction in DS,

can be viewed as a natural progression of this relationship, since oxidative stress can produce

UPR and vice versa [77, 78].

The 26S proteasome is, along with autophagy, the main protein degradation pathway of a

cell [79]. While the autophagic pathway was not investigated in this report, previous research

has proposed altered autophagic processes in DS [80]. After the induction of UPR, misfolded

proteins are retrotranslocated to the cytosol where they are tagged with ubiquitin and guided

to the proteasome for enzymatic degradation. [81]. The presence of a two-fold increase in ubi-

quitinated protein abundance implies the presence of increased misfolded proteins in DS cells

and an increased attempt to degrade these proteins. This observation may also be explained by

the increased UPR activation through XBP1s and ATF6, since these two transcription factors

activate protein degradation [82]. Concerning the impairment of proteasomal activity in DS

cells, several scenarios may take place. For example, aberrant production of misfolded proteins

is a possible suspect for this event. If the volume of misfolded proteins is higher than the

amount the proteasome can handle, then the degradation machinery can be impaired and

decreased degradation is observed [83]. Oxidative stress that causes mitochondrial dysfunction

and a decline in ATP generation in DS has been previously reported [84]. ATP is the fuel of

the 20S component of the 26S proteasome (catalytic compartment that performs the degrada-

tion) and decreased ATP observed in DS might provide a rationale for the decreased activity

[85]. Additionally, the presence of oxidative stress can directly affect the activity of the 26S pro-

teasome [86, 87]. Oxidative stress also plays a significant role in aging and senescence, and

enhanced ROS production has been observed in our model and other DS models [88]. Aging

can cause a decrease in protein degradation and the proteasome is a confirmed target of this

process [89]. Furthermore, a two-hit scenario can be proposed here: the increased load of mis-

folded proteins and the decreased activity of the proteasomal proteolytic enzymes describes a

system that can no longer cope with proteotoxic stress implying that dysfunction in the PN as

a player in the development of the comorbidities observed in DS.

Literature regarding chaperone expression in the DS population is limited. A report from

the Lubec research group has shown a decrease of HSP70 RY, HSC71 and GRP75 in the tem-

poral cortex, and an increase of HSP70.1 and GRP78 in the cerebellum of DS patients [90].

However, there is no evidence of chaperome alteration in cell models of DS. Here we report a
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significant decrease of basal Hsp27 abundance, as well as a non-statistically significant increase

of Hsp70 in DS fibroblasts. Members of Hsp27 family are referred to as small heat shock pro-

teins, and several of their functions have been reported, such as inhibition of apoptosis [91]

and the acceleration of ubiquitinated protein degradation [92]. The significant decrease in the

basal level of Hsp27 may be a contributing factor in the loss of cell viability observed in DS

cells. Decreased proteasomal activity in DS has been previously reported [93], with impaired

Hsp induction and expression possibly contributing to this observation; however, further

investigation is required to confirm this relationship. Regarding AD, Hsp27 has been found to

bind to phosphorylated Tau and promote its degradation through the proteasomal pathway,

aiding in cell survival [94]. Since phosphorylated Tau is an AD hallmark, decreased abundance

of Hsp27 might allow for the accumulation of phosphorylated tau and its aggregation. Hsp70

has received the most attention among chaperone families, as it is a major player in cellular

physiology and is implicated in diseases resulting from protein aggregation [95]. From the per-

spective of the PN, the increase of Hsp70 might serve as a marker of the presence of misfolded

proteins and may contribute to the observed activation of the UPR.

The failure of a proper heat shock response in DS fibroblasts is indicative of an inability to

cope with increased proteomic stress highlighting the importance of future research in this

area. Previous literature on trisomic and tetrasomic cells has shown a similar failure of the PN

in response to intense heat stress, as cells could not adequately induce HSF-1, ultimately lead-

ing to a disruption in Hsp90 function [96]. Hsp90 is involved in several cellular processes

including protein trafficking, protein stabilization and heat shock response [97, 98] and has

been shown to interact with Hsp70, together playing a major role in protein folding processes

[99]. In resting conditions, HSF-1 is bound by Hsp90 and transcriptional activity is repressed

[100]. In stress conditions (e.g. oxidative stress, heat stress) HSF-1 dissociates from Hsp90, tri-

merizes, and accumulates in the nucleus, where it induces the expression of several genes

intended to protect the cell against stress. Hsp genes have an important place in this group of

genes as Hsp90, Hsp70 and small Hsps are induced significantly after HSF-1 activation [101].

A defective HSF-1 function in cells of DS origin is therefore a candidate mechanism for the

reduced induction of Hsp90 and Hsp70 observed. Adding the failure to modulate the heat

shock response highlights the level of dysfunction that the PN faces. An inability to mount a

proper response might indeed be the mechanistic basis responsible for the development of

comorbidities related to disrupted PN, and detailed mechanistic studies investigating this

HSF-1 response in DS are ongoing.

From our results and existing literature, it is obvious that proteotoxic stress is present in the

DS cells, as well as a dysfunctional PN in DS models. From the presence of UPR to the

increased bulk of polyubiquitinated proteins and from decreased proteasomal activity to the

absence of a robust heat shock response, DS cells exhibit an inability to cope with protein mis-

folding. This manuscript represents a characterization of the stress-responsive modulators of

the PN, as well as a major associated degradation pathway. The PN consists of over 1,400 dif-

ferent components, i.e. ribosome, chaperones and co-chaperones, and degradation machinery

[21]; therefore, a detailed mechanistic dissection of each individual process is not practical

without this basic characterization. Future investigations into the distinct mechanisms

involved in ATF6-XBP1s signaling, heat shock response and HSF-1, proteasomal dysfunction,

and other PN functions, like autophagy, are logical extensions of this work. As a result of these

and future findings, we propose that an ambitious approach to helping DS individuals over-

come the comorbidities that affect them, could be, compounds that mitigate the observed dis-

ruption of proteome homeostasis, enhance proper folding or induce protein degradation.
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were treated with MB (2.5uM) for 1-24h and Grp78 abundance (A) and eIF2α phosphoryla-

tion (B) were measured via Western blotting. These data show that ER stress signaling is not

negatively impacted in DS cells.
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S2 Fig. DS cells possess greater amounts of ubiquitinated proteins at every time point after

proteasome inhibition. CTL and DS fibroblasts were treated with MG132 (10μM) for 0, 1, 2,

4, 8, and 24h, then protein ubiquitination was evaluated using Western blot. These data show

that, while variable, the mean amount of ubiquitinated protein was greater in the DS cells com-

pared to controls. N = 3.
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S3 Fig. Full blot images for Western blot presented in Fig 3.
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