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Summary 

Mutation accumulation varies across a genome by chromosomal location, nucleotide          

identity, surrounding sequence, and chromatin context 1–5 . Nevertheless, while        
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mutagens, replication machinery, and repair processes exhibit identifiable mutation         

signatures, at the tissue scale the aggregate manifestation of these processes has been             

difficult to measure. The challenge in observing tissue-wide somatic mutation patterns is            

that prior to clonal expansion, most mutations are relatively rare 6–9 . This challenge has             

meant that somatic mutation detection in humans has largely been limited to in vitro              

expanded stem cells 10–13 or clonal expansions that occur in vivo 14–17 . Here we describe a              

new method called FERMI (Fast Extremely Rare Mutation Identification), which          

comprehensively captures and quantifies rare mutations at single DNA molecule          

resolution, that exist at frequencies as rare as 10 -4 . Using this method, we observed that               

mutations are highly prevalent in human peripheral blood cells, with virtually every            

position mutated across fewer than 10 5 cells. Our results revealed an unanticipated            

degree of similarity in somatic mutation patterns across individuals, where most           

assayed substitutions are found to occur at conserved frequencies across nearly all            

individuals spanning a nine-decade age range. We observe substantial bias in changes            

for many positions, including substitution to only a single base across all assayed             

individuals. These observed mutational patterns existed both within non-conserved,         

non-coding and non-repetitive regions of the genome and within the coding regions of             

oncogenes implicated in hematopoietic malignancies. Finally, we identify individuals         

who deviate from typical mutational patterns in a reproducible manner that resembles a             

mild mismatch repair deficiency, suggesting that variance from typical somatic mutation           

rates may be relatively common. This study provides an unprecedented characterization           

of mutations in terminally differentiated somatic cells and demonstrates that somatic           
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mutations in such cells are significantly more frequent and deterministic than previously            

believed.  

3 



 

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Measuring somatic mutations has been technically challenging because        

mutations occur within individual cells that do not necessarily clonally expand to            

detectable representation. While these challenges have been somewhat overcome by          

increasing the depth of sequencing, using clever methods of barcoding 6 or by            

performing paired strand collapsing 18 , it remains difficult to get enough sequencing           

depth and breadth while sufficiently limiting false positive noise 6,9,19 . To overcome these            

sequencing limitations, we created FERMI, in which we adapted the amplicon           

sequencing method of Illumina’s TrueSeq Custom Amplicon platform to target only 32 x             

150bp genomic regions, spanning AML-associated oncogenic mutations and the Tier III           

regions of the human genome (non-conserved, non-protein coding and non-repetitive).          

We further improved upon Illumina’s capture efficiency to achieve approximately 1.2           

million unique captures from 500ng-1μg of genomic DNA (gDNA) (see Methods). We            

designed the targeting probes used in gDNA capture with a 16bp index of sequence              

unique to each individual and a 12bp unique molecular identifier (UMI) of random DNA              

unique to each capture (Fig. 1a). Sequencing reads were sorted by sample index and              

UMI, producing bins of single cell sequencing which were collapsed to produce            

relatively error-free consensus reads. Captures were only considered if supported by at            

least 5 reads, and variants were only included if identified in both paired-end             

sequences, and detected in at least 55% percent of supporting reads (Fig. 1a and              

Methods;   see   also   Extended   Data   Figure   1). 

While all probed regions were successfully captured and amplified, capture          

efficiency varied by 2-3-fold dependent on probe identity (Fig 1b). To understand assay             
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sensitivity, log-series dilutions of human heterozygous single nucleotide polymorphisms         

(SNPs) were prepared and assayed by FERMI. Using these dilutions, we observed            

robust quantification of diluted SNPs as rare as 10 -4 (Fig. 1c). Even more accurate              

quantifications of SNP frequency can be made when using strand information to follow             

dilutions of multiple SNPs located on the same allele (Fig. 1d). For more description of               

the methods used to maximize the accuracy of FERMI, see  Elimination of false positive              

signal    in   Methods   and   Extended   Data   Figure   1. 

Using FERMI, we captured and sequenced gDNA from the peripheral blood of 22             

apparently healthy donors ranging in age from 0 (cord blood) to 89 years of age               

(Extended Data Table 1). Surprisingly, within each of the probed regions, nearly every             

position is mutated in at least one individual, including all probed oncogenic mutations,             

independent of segment location or individual age, indicating a mutation burden of            

greater than 50 per megabase (See  Estimation of mutation burden in Methods). While             

FERMI could correctly identify individual-specific unique germline SNPs (Extended Data          

Figure 2a), rare somatic variants are found at remarkably similar allele frequencies            

across all sampled ages. The rare allele frequencies are similar enough between most             

individuals that comparisons of the variant allele frequencies for each unique           

substitution falls along a y=x line (Fig. 2a). FERMI of biopsies taken 1 month apart from                

the same individuals revealed the same germline SNPs (Extended Data Figure 2b), but             

detected rare variants are not significantly more similar to each other than to other              

individuals (Extended Data Figure 2c). Variant allele frequencies (VAFs) were averaged           

across 22 sampled blood donors and used as a comparison to individuals, which             
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appear age-independent and still adhere to a y=x line (R 2 Range = 0.426-0.631, Mean =               

0.558) (Fig. 2b), and are similar across experiments (Extended Data Figure 3a-d shows             

data from an additional 11 individuals). Variants with frequencies above 0.001 were            

found in nearly all samples, while more rare variants were missed with a probability              

inversely proportional to their allele frequencies. Furthermore, most variants likely          

represent multiple independent events rather than clonal expansions, as they are found            

at similar frequencies on both alleles (Extended Data Figure 3e). It thus appears that              

instead of being semi-random, the aggregate effect of all DNA damage and            

maintenance generates somatic mutations at predictable rates throughout the genome          

independent of age. We suspect that such mutations primarily arise during the            

generation of terminally differentiated blood cell types in a sequence context-dependent           

manner, with minimal impact of selection, such that it reflects the basal DNA damage              

and   repair   errors   in   hematopoietic   cells.  

We observed that the overall probability of a substitution occurring is biased by             

nucleotide identity, with C>T substitutions being the most common and T>G           

substitutions being the least common (Fig. 2c). These biases were largely expected, as             

similar patterns have been observed both in other healthy tissues and in            

cancers 10,14,17,20,21 . There were notable differences, especially for C>N changes which we           

observe as underrepresented within a CpG context (Fig. 2d). Regardless of functional            

or oncogenic potential, each site tends to undergo the same substitutions across            

individuals (Fig. 2e). These conserved substitution rates appear to be deterministic, and            

cannot be explained by undersampling (Extended Data Figure 4) or known base change             

6 

https://paperpile.com/c/dlorGC/1G47+tOl9F+DwXUp+2L6pK+R3yUL


 

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

biases (Extended Data Figure 5). It therefore appears that the combined sources of             

external and internal DNA mutation result in systematic substitutions at frequencies that            

are often predictable by location and sequence context. Suggestive of differences           

during cancer evolution and normal somatic mutation, the integrated exome sequencing           

pan cancer somatic mutation data from the TCGA exhibits different substitution patterns            

from those that we find in healthy donor blood (Extended Data Figure 6a). Using the               

trinucleotide contexts of the substitutions, 7 out of 30 previously identified mutations            

signatures were identified, and these signatures did not differ significantly across           

sampled   genomic   segments   (Extended   Data   Figure   6b-c). 

While we observe variants at conserved frequencies across many individuals,          

previous studies have described clonal expansions bearing AML-associated oncogenic         

changes that are largely restricted to old age 14–16,22 . While we observe each queried             

oncogenic change in every biopsied individual independent of age, we do not observe             

significant age-related changes in the allele frequencies of either oncogenic or           

non-oncogenic mutations within proto-oncogenes (Fig. 2f and Extended Data Figure 7).           

This inability to observe any clonal expansions with age is most likely due to the fact                

that the average age of the individuals within our cohort is 49 years, with only 5 donors                 

older   than   70   years. 

To explore the ability of FERMI to distinguish perturbations of somatic mutation            

patterns, gDNA from mismatch repair deficient HCT116 cells (MMR MT ; hemizygous for           

MLH1) was compared to MMR proficient parental cell line gDNA. Substantiating our            

method, there was a substantial increase in VAFs within the MMR MT gDNA when             
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compared to parental gDNA (Fig. 3a-b). Unexpectedly, while the VAFs for most            

peripheral blood samples closely resemble those in other individuals, samples from two            

individuals (2 and 19), contained a subset of variants that deviated from the population              

averages with approximately a twofold increase in prevalence (Fig. 3c, 3d, and            

Extended Data Figure 9). While the magnitude of deviation from mean VAFs was             

different, the identities of the deviating variants were the same, such that a comparison              

of VAFs between these two individuals correlate more closely to a y=x line than to the                

overall population average (Fig. 3e). This consistent deviation in VAFs for these two             

individuals from the averaged population suggests that the mechanisms governing          

mutation levels can be systematically perturbed. Surprisingly, the VAF changes in these            

two individuals resemble those altered in the MMR MT  HCT116 cells, though the            

magnitude of these changes are greater in the latter (Fig. 3f). Finally, the deviating              

variants found within individuals 2 and 19 are not enriched for either oncogenic variants              

or for other variants within coding regions (Fig. 3g), indicating that deviations from the              

typical   variant   pattern   are   not   likely   the   result   of   selection. 

As expected from previous studies 23 , the HCT116 MMR MT gDNA showed an           

increased prevalence of T>C and T>A substitutions when compared to parental gDNA            

(Extended Data Figure 8). The samples from individuals #2 and #19 also exhibited             

these increased rates of T>C and T>A substitutions, with less extensive increases at C              

positions, compared with the average of the 22 individuals (Fig. 3h-j and Extended Data              

Figure 9), mirroring the changes observed in MMR MT HCT116 cells. Thus, these two             

individuals appear to present with a mild MMR-like substitution pattern. In support of the              
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results, individual #2 shows the same increased rates of substitutions across multiple            

experiments, with strong reproducibility in mutation patterns (Extended Data Figure          

9h-j). Of note, the systematic variance from the typical mutational pattern for these two              

individuals and the MMR MT HCT116 cells serves as validation of the specificity of FERMI              

to accurately detect variants. More importantly, this finding of two individuals with            

deviating mutational patterns out of a sample size of only 22 individuals may indicate              

that individuals with significant deviation from typical mutational profiles may be           

relatively   common   in   the   human   population. 

 

Conclusion 

These studies reveal an unprecedented degree of similarity in somatic mutational           

patterns across most individuals, that almost all genomic positions are mutated within            

less than a hundred-thousand leukocytes, and how mutational spectra can be           

systematically disrupted in some individuals. Strikingly, we observed extremely         

reproducible biases at  each particular nucleotide position in terms of the frequency of             

changes and the base to which it is changed. These strong position-dependent            

substitution biases will restrict phenotypic diversity upon which somatic evolution can           

act. It appears that mutation incidence, both non-oncogenic and oncogenic, are           

relatively well tolerated, highlighting the importance of evolved tumor suppressive and           

tissue   maintenance   mechanisms.  
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Figure 1 | Amplicon sequencing accurately detects mutation allele frequencies as           

rare as 1/10,000. a , Graphical depiction of gDNA capture and analysis method.  b ,             

Capture efficiencies vary in a probe dependent manner.  c , Accurate detection of a             

single heterozygous SNP in gDNA from one individual diluted into gDNA from another             

(without this germline SNP) to frequencies as low as 1/10,000.  d , Accurate detection of              
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three linked SNPs found within the same allele diluted as in c. For c and d, error shown                  

is   standard   deviation.  

 

Figure 2 | Mutations exist at conserved frequencies independently of age.  a ,            

Comparison of VAFs of identified variants within a 34 year old (x-axis) and 62 year old                

(y-axis); R 2 = 0.408211, p=0.000. R 2 values unless otherwise noted are calculated for all              

points falling below VAFs of 0.003 which largely includes all variants but germline.  b ,              

VAFs from a 34 year old (x-axis) compared to mean VAFs from individuals ranging in               

ages from newborn to 89 years of age (n=22); R 2 = 0.590412, p=0.000.  c , Relative               

contribution rates of each base substitution to all substitutions identified.  d , Relative            

contribution rates of each base substitution segregated by surrounding 5’ and 3’            

nucleotide context.  e , All identified base substitutions within a probed region are plotted             

by their position and allele frequencies for individuals 7 and 15 (representative of all              

other individuals, with greater deviation observed for individuals 2 and 19 as described             

below), revealing highly reproducible patterns.  f , Oncogenic VAFs plotted as a function            

of   donor   age   does   not   reveal   evidence   of   clonal   expansions. 

 

Figure 3 | Individuals Can Systematically Deviate from the Population Average. a ,            

Comparing VAFs in HCT116 MMR+ vs MMR MT cells reveals an increase in frequencies             

for many of the observed variants in MMR MT cells (R 2 = 0.211479).  b , MMR MT vs mean                

VAFs from blood of the 22 individuals shows a similar pattern of increased VAFs as the                

comparison with parental HCT116 cells (R 2 = 0.120895).  c , blood from a 73 year old               
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person (individual #19) compared to the mean VAFs reveals a deviating population of             

variants that exist at an increased frequency compared with average VAFs (R 2 =             

0.387125).  d , A cord blood sample (individual #2) also shows a subset of variants with               

higher frequencies than in the average (R 2 = 0.278250).  e , VAFs from individual #2 vs               

individual #19 reveals that the deviating variants are at the same positions, causing the              

comparison to fall close to the y=x line (R 2 = 0.613542).  f , Plotting the mean for VAFs                 

from individuals #2 and #19 versus VAFs from MMR MT HCT116 cells reveals that the              

variants within the blood are the same as those found within the MMR MT cell line. While                

variant frequencies are higher in the MMR MT cell line, the proportional change for             

different deviating variants are similar (R 2 = 0.587474).  g , Variants detected in            

individuals #2 and #19 are not enriched for oncogenic changes, indicated in blue.  h ,              

Plot of only C>N/G>N variants shows relative similarity between individual #2 and the             

average for all other individuals (R 2 = 0.350623).  i , Plot of only T>N/A>N variants              

reveals that the majority of deviating variants for individual #2 are substitutions affecting             

T   or   A   (R-Squared   =   0.040712). 

 

 

Methods 

Amplicon   Design 

Amplicon probes for targeted annealing regions were created using the Illumina           

Custom Amplicon DesignStudio ( https://designstudio.illumina.com/ ). UMIs were then       

added to the designed probe regions and generated by IDT using machine mixing for              
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the randomized DNA. Probes were PAGE purified by IDT. All probes are listed below              

along   with   binding   locations   and   expected   lengths   of   captured   sequence. 

 
 

3
5

236

2 4

0 2

8 0

6 8

4 6

2 4

0 2

8 0

6 8

4 6

2 4

0 2

8 0

6 8

4 6

2 4

0 2

8 0

6 8

4 6

Gene Probe   Up Probe   Down Probe   Start Probe   End Length 

JAK2 
AGTTTACACTGACA
CCTAGCTGTGATC 

CCATAATTTAAAACC
AAATGCTTGTGAGA

A chr9:5073733 chr9:5073887 155 

TP53-1 
TCATCTTGGGCCTG

TGTTATCTCCTA 
ATCCTCACCATCAT
CACACTGGAAGAC chr17:7577504 chr17:7577635 132 

TP53-2 
CCCTCAACAAGATG

TTTTGCCAACTG 
ATGAGCGCTGCTCA

GATAGCGATGGT chr17:7578369 chr17:7578544 176 

TP53-3 
GGACAGGTAGGAC
CTGATTTCCTTACT 

TGTCCTGGGAGAGA
CCGGCGCACAGA chr17:7577084 chr17:7577214 131 

NRAS-1 
CAATAGCATTGCAT
TCCCTGTGGTTTT 

GTACAGTGCCATGA
GAGACCAATACAT chr1:115256496 chr1:115256680 185 

NRAS-2 
GAAGGTCACACTAG
GGTTTTCATTTCC 

AAAAGCGCACTGAC
AATCCAGCTA chr1:115258713 chr1:115258897 185 

HRAS 
TCCTTGGCAGGTGG

GGCAGGAGACCC 
GCAAGAGTGCGCTG

ACCATCCA chr11:534258 chr1:534385 128 

KRAS-1 
AGGTACTGGTGGAG

TATTTGATAGTGT 
CAAGAGTGCCTTGA
CGATACAGCTAATT chr12:25398247 chr12:25398415 169 

KRAS-2 
GACTGTGTTTCTCC
CTTCTCAGGATTC 

TACAGTGCAATGAG
GGACCAGTACATG chr12:25380242 chr12:25380368 127 

TET2-1 
CCATGTTTTGGCTC
ATTCATGCTCTTA 

ACGGCCACTCCCCC
AATGTCAG chr4:106197237 chr4:106197405 169 

TET2-2 
CTTTTGAAAGAGTG
CCACTTGGTGTCT 

GGTGATGGTATCAG
GAATGGACTTAGTC chr4:106155137 chr4:106155275 139 

DNMT3A 
TGTGTGGTTAGACG

GCTTCCGGGCA 
AGGCAGAGACTGCT

GGGCCGGTCA chr2:25457211 chr2:25457364 154 

IDH1 
CAAATGTGGAAATC
ACCAAATGGCACC 

TGGGGATCAAGTAA
GTCATGTTGGCA chr2:209113077 chr2:209113239 163 

IDH2 
GAAGAAGATGTGGA
AAAGTCCCAATGG 

CATGGCGACCAGGT
AGGCCAGG chr15:90631809 chr15:90631969 161 

GATA1 
CTTCCAGCCATTTC
TGAGATATCCTCA 

CAGCTGCAGCGGT
GGCTGTGCT chrX:48649667 chrX:48649849 183 

SF3B1 
GTGAACATATTCTG
CAGTTTGGCTGAA 

ACCATCAGTGCTTT
GGCCATTGC chr2:198266803 chr2:198266967 165 

TIIIA 
CATCTATTCTGTGCT

AGGCATTGTGTG 
CAGACCTAGCATCT

GTGCCAGAC chr1:115227814 chr1:115227978 165 

TIIIB 
CAGTCTGGGTTTTG
GAGCAATGATATC 

GCAGTGAGCTCAGC
CTTGATTTT chr2:223190674 chr2:223190820 147 

TIIIC 
CCTGGTGCTTAGTC
CTGTTCTGAAATT 

AGTCTTCTATAATGC
CACAACCTGTAT chr2:229041101 chr2:229041289 189 

TIIID 
GAACAGAACACTTG
GTAGTTGACCATG 

AGACAGGGAACTGG
CATGAAGAGTTT chr4:110541172 chr4:110541302 131 

TIIIE 
GCCTAGAACAGGCA

CCATACATTCAAT 
AGATGGTGTTGCTG
TGCCGGATAGGAG chr4:112997214 chr4:112997386 173 

TIIIF TGGCACTATGTGGA GGATGTTGGTGCTA chr4:121167756 chr4:121167884 129 
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GATGTTAGTACAG TCAGTAGCCATA 

TIIIG 
CTCTAGGCTTAGTG
GTCAAGGAATGAA 

AGAAGCAGGACTGT
GCTTCCAAACAA chr4:123547743 chr4:123547901 159 

TIIIH 
CTTGGTGGTAGCCT
AGGCAGTAATTAA 

CACGTGGTTGGGAA
GAGAAAGTG chr4:124428637 chr4:124428767 131 

TIIIJ 
TTCTATAGCACTGG
TGACCAGGACACT 

CTGGCCACAGTGCC
TGGTTTCC chr11:2126256 chr11:2126420 165 

TIIIK 
AGACAGGAGGAAG
GAGCAATTCAGAAG 

CATGGAGATCTCGT
CCCCTCAGA chr11:2389983 chr11:2390171 189 

TIIIL 
TAGGCCAGAAAACA
CACAGTGTCGGG 

AACTCCGGTAAGTG
GCGGGTGGGGGT chr11:2593889 chr11:2594074 186 

TIIIM 
ATCTGGGAACAGAC
CTTCCTCAGGCAT 

GTTCTAAGTTACTCT
GTGTACTTGACT chr11:11486596 chr11:11486728 133 

TIIIN 
AGCCTAGTTACCAT
AGACGGATTCAAC 

GAATATCTTCTAACT
GGACTTAGAAAACC chr15:92527052 chr15:92527176 125 

TIIIO 
CCAACATGTTCTAA
ATTCTGGCCACAG 

TGGGTCTCAGCCAT
CCCATTACTG chr16:73379656 chr16:73379832 177 

TIIIP 
CTAACATCTCACTTC

TACCCTACGCTA 
TAAGTGCCCACTAC

CCCATCCTTAAT chr16:82455026 chr16:82455164 139 

TIIIQ 
TCATGACCCAGGCC
TCCCAGAACTGAG 

ATCTGTGAAGCCGG
AGTGAAAACAAC chr16:85949137 chr16:85949299 163 

 
Genomic   DNA   Isolation 

Human blood samples were purchased from the Bonfils Blood Center          

Headquarters of Denver Colorado. Our use of these samples was determined to be “Not              

Human Subjects” by our Institutional Review Board. Biopsies were collected as           

unfractionated whole blood from apparently healthy donors, though samples were not           

tested for infection. Samples were approximately 10 mL in volume, and collected in BD              

Vacutainer spray-coated EDTA tubes. Following collection, samples were stored at 4 o C           

until processing, which occurred within 5 hours of donation. To remove plasma from the              

blood, samples were put in 50 mL conical tubes (Corning #430828) and centrifuged for              

10 minutes at 515 rcf. Following centrifugation, plasma was aspirated and 200 mL of              

4 o C hemolytic buffer (8.3g NH 4 Cl, 1.0g NaHCO 3 , 0.04 Na 2 in 1L ddH 2 O) was added to               

the samples and incubated at 4 o C for 10 minutes. Hemolyzed cells were centrifuged at              

515 rcf for 10 minutes, supernatant was aspirated, and pellet was washed with 200 mL               
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of 4 o C PBS. Washed cells were centrifuged for at 515rcf for 10 minutes, from which               

gDNA   was   extracted   using   a   DNeasy   Blood   &   Tissue   Kit   (Qiagen   REF   69504). 

 

Amplicon   Capture 

For amplicon capture from gDNA, we modified the Illumina protocol called           

“Preparing Libraries for Sequencing on the MiSeq” (Illumina Part #15039740 Revision           

D). DNA was quantified with a NanoDrop 2000c (ThermoFisher Catalog #ND-2000C).           

500ng of input DNA in 15μl was used for each reaction instead of the recommended               

quantities. In place of 5μl of Illumina ‘CAT’ amplicons, 5μl of 4500ng/μl of our amplicons               

were used. During the hybridization reaction, after gDNA and amplicon reaction mixture            

was prepared, sealed, and centrifuged as instructed, gDNA was melted for 10 minutes             

at 95 o C in a heat block (SciGene Hybex Microsample Incubator Catalog #1057-30-O).            

Heat block temperature was then set to 60 o C, allowed to passively cool from 95 o C and               

incubated for 24hr. Following incubation, the heat block was set to 40 o C and allowed to               

passively cool for 1hr. The extension-ligation reaction was prepared using 90 μl of ELM4              

master mix per sample and incubated at 37 o C for 24hr. PCR amplification was             

performed at recommended temperatures and times for 29 cycles. Successful          

amplification was confirmed immediately following PCR amplification using a         

Bioanalyzer (Agilent Genomics 2200 Tapestation Catalog #G2964-90002, High        

Sensitivity D1000 ScreenTape Catalog #5067-5584, High Sensitivity D1000 Reagents         

Catalog #5067-5585). PCR cleanup was then performed as described in Illumina’s           

protocol using 45 μl of AMPure XP beads. Libraries were then normalized for             

15 



 

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

sequencing using the Illumina KapaBiosystems qPCR kit (KapaBiosystems Reference #          

07960336001). 

 

Sequencing 

Prepared libraries were pooled at a concentration of 5 nM and mixed with PhiX              

sequencing control at 5%. Libraries were sequenced on the Illumina HiSeq 4000 at a              

density   of   12   samples   per   lane. 

 

Bioinformatics 

The analysis pipeline used to process sequencing results can be found under            

FERMI here:  http://software.laliggett.com/ . For a detailed understanding of each         

function provided by the analysis pipeline, refer directly to the software. The overall goal              

of the software built for this project is to analyze amplicon captured DNA that is tagged                

with equal length UMIs on the 5’ and 3’ ends of captures, and has been paired-end                

sequenced using dual indexes. Input fastq files are either automatically or manually            

combined with their paired-end sequencing partners into a single fastq file. Paired reads             

are combined by eliminating any base that does not match between Read1 and Read2,              

and concatenating this consensus read with the 5’ and 3’ UMIs. A barcode is then               

created for each consensus read from the 5’ and 3’ UMIs and the first five bases at the                  

5’ end of the consensus. All consensus sequences are then binned together by their              

unique barcodes. The threshold for barcode mismatch can be specified when running            

the software, and for all data shown in this manuscript one mismatched base was              
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allowed for a sequence to still count as the same barcode. Bins are then collapsed into                

a single consensus read by first removing the 5’ and 3’ UMIs. Following UMI removal,               

consensus sequences are derived by incorporating the most commonly observed          

nucleotide at each position, so long as the same nucleotide is observed in at least a                

specified percent of supporting reads (55% of reads was used for results in this              

manuscript) and there are least some minimum number of reads supporting a capture             

(5 supporting reads was used for results in this manuscript). Any nucleotide that does              

not meet the minimum threshold for read support is not added to the consensus read,               

and alignment is attempted with an unknown base at that position. From this set of               

consensus reads, experimental quality measurements are made, such as total captures,           

total   sequencing   reads,   average   capture   coverage,   and   estimated   error   rates.  

Derived consensus reads are then aligned to the specified reference genome           

using Burrows-Wheeler 24 , and indexed using SAMtools 25 . For this manuscript         

consensus reads were aligned to the human reference genome hg19 26,27 (though the            

software should be compatible with other reference genomes). Sequencing alignments          

are then used to call variants using the Bayesian haplotype-based variant detector,            

FreeBayes 28 . Identified variants are then decomposed and block decomposed using the           

variant toolset vt 29 . Variants are then filtered to eliminate any that have been identified              

outside of probed genomic regions. If necessary variants can also be eliminated if below              

certain coverage or observation thresholds such that variants must be independently           

observed multiple times in different captures to be included. For this manuscript, we             
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included all variants that passed previous filters and did not eliminate those that were              

observed   only   within   a   single   capture,   unless   otherwise   indicated. 

 

Elimination   of   false   positive   signal 

A number of steps have been included within sample preparation and           

bioinformatics analysis specifically to distinguish between true positive signal and false           

positive signal. Using the dilution series shown in Figs. 1c-d we can show sufficient              

sensitivity to identify signal diluted to levels as rare as 10 -4 . While these dilutions show               

significantly improved sensitivity over many current sequencing methods, they do not           

address our background error rate. Unfortunately, because both endogenous and          

exogenous DNA synthesis is error prone, it is challenging to find negative controls that              

can be used to estimate background error rates with a method of mutation detection as               

putatively sensitive as FERMI. Nevertheless, we have a number of steps that should             

eliminate most sources of false signal. The two largest sources of erroneous mutation             

when sequencing DNA will typically be from PCR amplification mutations (caused both            

by polymerase errors and exogenous insults like oxidative damage), and sequencing           

errors. 

The   steps   are   the   following: 

 

● Elimination   of   first   round   PCR   amplification   errors 

● Elimination   of   subsequent   PCR   amplification   errors 

● Elimination   of   sequencing   errors 
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Elimination   of   first   round   PCR   amplification   errors 

The first round of PCR amplification performed during library preparation causes           

mutations that are challenging to distinguish from those that occurred endogenously.           

Since there is little difference between those mutations that occur during the first round              

of PCR amplification and those that occurred endogenously, we rely on probability to             

eliminate these errors. Since we are performing single-cell sequencing, we can require            

that a mutation be observed in multiple cells before it is called as a true positive signal.                 

We expect about 400 first round PCR amplification errors, and the probability that the              

identical mutation will occur in multiple cells becomes exponentially unlikely (Extended           

Data Figure 1). By requiring a mutation be observed in just three cells before it is called                 

as real signal, only about 1-2 first round PCR amplification errors should make it into the                

final data. In contrast, when we process our data requiring up to 5 independent              

observations of a mutation, the overall mutation spectrum does not change, apart from             

a loss of the most rarely observed variants. This observation led us to include all               

variants   that   were   observed   even   once.  

 

Elimination   of   subsequent   PCR   amplification   errors 

Elimination of PCR amplification errors after the first round of PCR is done using              

UMI collapsing (Fig. 1a). Each time a strand is amplified, the UMI will keep track of its                 

identity. Any mutations that occur after the first round of PCR will be found on average in                 

25% of the reads (or fewer for subsequent rounds). This allows us to collapse each               
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unique capture and eliminate any rarely observed variants associated with a given UMI.             

Utilizing the UMI in this way allows us to essentially eliminate any PCR amplification              

errors   that   occurred   after   the   first   round   of   PCR. 

 

Elimination   of   sequencing   errors 

Sequencing errors are eliminated in two ways. This first method is by using             

paired-end sequencing to read the same fragment of DNA twice (Fig. 1a). The             

sequence of these reads (Read1 and Read2) should match in lieu of sequencing errors.              

For an error to escape elimination it would need to occur at the same position (changing                

to the same new base) within both Read1 and Read2. Therefore, when the base call               

differs at a position on Reads 1 and 2, these changes are eliminated from the final                

sequence. This collapsing should eliminate most sequencing errors, although         

sequencing errors of the same identity occurring at the same position will escape.             

These errors should be removed when collapsing into single cell bins (Fig. 1a). As with               

the logic when eliminating subsequent PCR amplification errors, most sequences          

associated with each UMI pair should be identical. Therefore, sequencing errors           

passing through Read1 and Read2 will be very unlikely to match other sequenced             

strands from the same capture event, and are eliminated during consensus sequence            

derivation. 

 

Mutation   signature   analysis 
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Twenty somatic mutation signatures were previously identified 20 by analyzing         

trinucleotide mutation context of cancer genomes using non-negative matrix         

factorization (NMF) and principal component analysis (PCA). Here, we used          

deconstructSig 30 to identify the relative presence of those mutation signatures within the            

somatic mutations detected blood using somaticSignatures 31 . Codon triplet biases were          

analyzed   using   the   MutationalPatterns   R   package 32 . 

 

Estimation   of   mutation   burden 

It is difficult to understand the somatic lineage development that gave rise to the              

number of cells that are assayed from each blood biopsy. Therefore, estimating a             

somatic mutation rate is challenging. Nevertheless, we can derive estimates of somatic            

mutation   burden. 

An upper bound for the somatic mutation burden observed by FERMI analysis            

can be estimated by using the number of captures and total observed variants, and              

assume that all of these are de-novo mutations. In our data from Cohort 1, we observe                

on average 1,232,458 unique captures per analyzed blood sample. These captures are            

relatively uniformly spread across each of our 32 different probes, which span a total of               

4838bp.   From   this,   the   total   probed   DNA,   D T ,   can   be   estimated   as: 

DT = 32 probes
1232458 captures  4838 bp*  

86332243.9 bp  DT = 1  

The total number of observed variants within each blood sample is on average             

168,940,   from   which   the   aggregate   mutation   burden,   M,   can   be   estimated   as: 

M = 186332243.9 bp
168940 mutations  

mut/bp  M = 9 * 10−4  
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00 mut/Mb  M = 9  

A lower estimate can be made by assuming that mutations are not all unique              

occurrences but might be the result of clonal expansions creating many copies of each              

mutation. This mutation burden, M, can be roughly estimated by the approximately            

40,000 captures per each of the 32 probes that captured roughly 6000 variants across a               

conservative 100bp sized capture for each probe (probe region is realistically smaller            

than 150bp because of collapsing conditions). Given that all variants for which allelic             

information could be discerned were present on both alleles, we can realistically            

conclude each of the ~3000 base positions queried was mutated at least twice (hence              

the   estimate   of   6000   variants). 

M = 6000 variants/sample
40000 captures  32 probes 100 bp/probe* *

 

5 mut/bp  M =  * 10−5
 

50 mut/Mb  M =   
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Figure 1 | Amplicon sequencing accurately detects mutation allele frequencies as rare as 1/10,000. a, Graphical depiction of gDNA capture and analysis method. b, 
Capture efficiencies vary in a probe dependent manner. c, Accurate detection of a single heterozygous SNP in gDNA from one individual diluted into gDNA from another (without 
this germline SNP) to frequencies as low as 1/10,000. d, Accurate detection of three linked SNPs found within the same allele diluted as in c. Error shown is standard deviation.

a b

c d

Figure 1



Figure 2

Figure 2 | Mutations exist at conserved frequencies independently of age. a, Comparison of VAFs of identified variants within a 34 year old (x-axis) and 62 year old (y-axis); 
R2 = 0.408211, p=0.000. R2 values unless otherwise noted are calculated for all points falling below VAFs of 0.003 which largely includes all variants but germline. b, VAFs from 
a 34 year old (x-axis) compared to mean VAFs from individuals ranging in ages from newborn to 89 years of age (n=22); R-Squared = 0.590412, p=0.000. c, Relative 
contribution rates of each base substitution to all substitutions identified. d, Relative contribution rates of each base substitution identified by surrounding 5’ and 3’ nucleotide 
context. e, All identified base substitutions within a probed region are plotted by their position and VAFs for individuals 7 and 15 (representative of most other individuals), 
revealing highly reproducible patterns. f, Oncogenic VAFs plotted as a function of donor age show little evidence of clonal expansion.

a b c

d e f

A
A

A
C

A
G

A
T

C
A

C
C

C
G

C
T

G
A

G
C

G
G

G
T

TA TC TG TT



Figure 3 | Individuals Can Systematically Deviate from Population Average. a, Comparing VAFs in HCT116 MMR+ vs MMRMT cells reveals an increase in frequencies for 
many of the observed variants in MMRMT cells (R-Squared = 0.211479). b, MMRMT vs mean VAFs from blood of the 22 individuals shows a similar pattern of increased VAFs as 
the comparison with parental (R-Squared = 0.120895). c, blood from a 73 yr old person (individual #19) compared to the mean VAFs reveals a deviating population of variants 
that exist at an increased frequency compared with average VAFs (R-Squared = 0.387125). d, A cord blood sample (individual #2) also shows a subset of variants with higher 
frequencies than in the average (R-Squared = 0.278250). e, VAFs from individual #2 vs individual #19 reveals that the deviating variants are at the same positions causing the 
comparison to fall close to the y=x line (R-Squared = 0.613542). f, Plotting the mean for VAFs from individuals #2 and #19 versus VAFs from MMRMT HCT116 cells reveals that 
the variants within the blood are the same as those found within the MMRMT cell line. While variant frequencies are higher in the MMRMT cell line, the identities of the deviating 
variants are the same (R-Squared = 0.587474). g, Variants detected in individuals #2 and #19 are not enriched for oncogenic changes, indicated in blue h, Plot of only C>N/G>N 
variants shows relative similarity between MMR- and parental cells (R-Squared = 0.350623). i, Plot of only T>N/A>N variants reveals that the majority of deviating variants 
between MMRMT and parental cells are substitutions affecting T or A.
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Supporting 
Captures Duplex Mock-Duplex

% Vars 
Eliminated

4 4240 4264 0.56285

3 4912 4928 0.32468

2 5704 5734 0.52319

1 6760 6794 0.50044

Enzyme
Error Rate 
(mut/base) Unique UMIs

Captures per 
UMI

Total Amplicon 
Size

# Bases In First 
Amplification Total Errors

Phusion HF 
Buffer 0.00000044 2818388 88075 4838 426105036 187

Phusion GC 
Buffer 0.00000095 2818388 88075 4838 426105036 405

Supporting 
Captures 1 2 3 4 5

# Phusion HF
Buffer Muts 187.49 7.27 0.28 0.01 0.00

# Phusion GC
Buffer Muts 404.80 33.87 2.83 0.24 0.02

a b

c

d

Extended Data Figure 1
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Individual Age (years)

1 0

2 0

3 0

4 34

5 34

6 30

7 34

8 46

9 47

10 40

11 59

12 59

13 58

14 62

15 65

16 64

17 64

18 73

19 73

20 72

21 79

22 89

Extended Data Table 1

Individual Age (years)

25 0

26 34

27 44

28 43

29 46

30 44

31 46

32 49

33 41

34 57

35 62

Cohort 1

Cohort 2

a

b



Individual 0mo vs 1mo

Individual A 0.460348

Individual B 0.538478

Individual C 0.436766

Individual D 0.522387

Individual E 0.519219

Individual F 0.482805
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c

Extended Data Figure 2
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Extended Data Figure 9

g h
R-Squared

Exp1 Ind2 vs Exp2 Ind2 0.999856
Exp1 Ind7 vs Exp2 Ind7 0.999788
Exp1 Ind2 vs Exp2 Ind7 0.507348
Exp2 Ind2 vs Exp1 Ind7 0.316328

i j
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Extended Data Figure 1: Estimation of false-positive rates due to sequencing and            

PCR   errors.  

a ,  The use of sequencing information found within Read 1 and Read 2 of paired-end               

sequencing is often used to correct sequencing errors. We performed paired-end           

collapsing prior to consensus read derivation (Fig. 1a), though the effect was            

surprisingly mild. In this table, the number of identified variants are shown when duplex              

collapsing is used or not in consensus read derivation (mock duplexing processes the             

collapsing in the exact same way as duplex collapsing without eliminating variants for             

not being in both reads). These variant counts are shown while also varying the number               

of required independent supporting captures for a variant to pass filtering. The logic             

behind this analysis is that the fewer captures in which a variant is found, the less                

confidence we have that it represents true biological signal. Lower confidence variants            

should be more likely to be eliminated by duplex collapsing reads, if other filters were               

otherwise insufficient. We show that whether reads are first duplex collapsed or not,             

there is little effect on the percent of variants that are eliminated, suggesting that our               

other filtering parameters appear to adequately eliminate sequencing errors.  b , While           

the filters used for FERMI should eliminate the majority of errors introduced during PCR              

amplification and those errors arising from sequencing mistakes, errors made in the first             

round of PCR amplification could be identified as false positives. If there is a sufficient               

number of PCR errors made within the first round of amplification, these errors could              

create artificial patterns within the data. Using one supporting capture as the lower limit              

for variants to be identified as true signal, the expected number of errors were estimated               
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from amplification using Phusion polymerase and are shown in the table (two            

estimations are included because Illumina’s reaction mixtures are proprietary and we do            

not know the exact reaction conditions).  c , When only requiring one supporting capture,             

3-6% of variants should be derived from first round PCR errors, although more than half               

of these will be eliminated by the requirement that 55% of reads for a capture support                

the variant (errors from subsequent PCR rounds will be even more efficiently eliminated             

by the 55% cutoff). If we require that the same variant be present at the same location                 

across multiple captures before it is included in the final results, it becomes             

exponentially more unlikely that a first round PCR error would get included. In contrast,              

increased capture number requirements have a much more modest effect on variants            

called.  d , While increasing the number of required supporting captures eliminates rare            

variants as well as first round PCR errors, the numbers of identified variants only              

decreases modestly for all individuals (blue line, left y-axis). In contrast, the number of              

variants expected to be identified as a result of first round PCR amplification errors              

exponentially decreases with each extra capture requirement (red line, right y-axis).           

When compared to the number of variants that pass all filters and processing, the first               

round PCR errors appear to have minimal effect even when only a single capture is               

required. Expectedly, as we increase the number of required captures supporting a            

variant, the total number of variants also decreases, and after two required captures             

should essentially not include mutations created by PCR amplification. Throughout most           

of this paper, a single capture is used, so as to not bias results by variant                

representation. Nonetheless, the patterns of mutations identified look very similar when           
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greater numbers of supporting captures are required.  e , As shown in Fig. 1a, when              

deriving consensus reads, variants are eliminated for being rarely observed across           

reads supporting a given capture. The cutoff we use throughout most of this manuscript              

is 55%, such that a given variant must be present in at least 55 percent of sequencing                 

reads supporting a capture or they are ignored. The logic behind this chosen cutoff is               

that more stringent cutoffs largely do not alter the observed mutation spectra, but result              

in a significant loss in putatively true positive signal. With this cutoff, the expected              

number of sequencing errors can be estimated. We observe that 9 percent of bases are               

mismatched within reads supporting a given capture. Each capture is approximately           

150bp in length and is supported by an average 13.5 reads. This yields an average of                

182.25   errors   within   each   sequenced   capture. 

.09 50 bp 3.5 readsEtot = 0 * 1 * 1  

82.25  Etot = 1  

Applying the requirements that 55-95 percent of reads must support a given variant             

(shown as m), the number of false positive signals that pass filtering for each prepared               

blood sample can be computed. Within each capture there are approximately 450 total             

possible   changes,   and   an   average   of   18   reads   supporting   each   capture: 

  Eseq = m 8 reads/capture) 200000 captures/sample* 1 450 bp
182.5 PCR err

* 1
 

 

55.95 errors/sample  m .55 E= 0 :  seq = 1  

1.48 errors/sample  m .65 E= 0 :  seq = 3  

.19 errors/sample  m .75 E= 0 :  seq = 6  

.22 errors/sample  m .85 E= 0 :  seq = 1  



.24 errors/sample  m .95 E= 0 :  seq = 0  

The number of expected PCR amplification errors to pass all cutoffs is then estimated              

using a Gaussian distribution. The logic is that the first round of PCR amplification will               

create errors that will be at an allele frequency near 50 percent as an error will be                 

created in one of two strands of a captured sequence. Using a Gaussian distribution              

with a mean at 50, the number of all PCR amplification errors expected to pass the 1                 

supporting capture and 55-95 percent of sequencing reads criteria can be calculated by             

integrating under the Gaussian distribution. Since we expected about 405 first round            

PCR amplification errors, and subsequent errors will exist at much smaller allele            

frequencies, the expected number of variants expected to pass criteria is calculated as             

follows: 

05 (x)Etot = 4 * ∫
100

c
f + mc  

Above we integrate from the support allele frequency  c  to  100  under the Gaussian              

distribution  f(x) , multiply this by the expected total number of first round PCR             

amplification errors, and add to this the number of expected sequencing errors  m  as a               

function of the support frequency  c . As shown here, when variants must be supported              

by at least one unique capture and at least 55 percent of supporting reads, we               

anticipate only about 150 total variants false variants to make through all FERMI             

analysis. We believed this to be an acceptable amount of noise given that we see about                

6000 total variants from each sample and generated most of the data in this manuscript               

with   these   criteria. 
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Extended   Data   Table   1:   Cohort   of   sequenced   individuals. 

a , This table contains the ages of the individuals used throughout the manuscript, and              

their corresponding sample numbers. Those samples shown as age ‘0’ are cord blood             

samples that had been previously banked. All other samples were taken from            

apparently healthy blood donors that passed the requirements to donate blood.  b , This             

table contains the ages of individuals used to ensure that the data generated by FERMI               

was not experiment specific. These samples were used as the comparison to generate             

Extended   Data   Figs.   3a-b. 

 

Extended Data Figure 2: Resequenced samples are not more similar to each other             

than   to   other   individuals. 

a , Low frequency variants tend to exist close to a y=x line, while high frequency SNPs                

differ across individuals. As expected, such SNPs cluster around frequencies of 0.5 and             

1 (R-Squared=0.243364).  b , When samples are re-sequenced, they show a high degree            

of similarity, both among SNPs and more rare variants (R-squared=0.568749).  c ,           

Though repeat sequencing of individuals typically results in close matches of VAF,            

repeats do not more closely each other than they match the VAF population mean or               

any other typical sample. This suggests that the differences observed between samples            

is   likely   due   to   sampling   differences   than   to   real   differences   in   individual   mutation   loads. 

 

Extended Data Figure 3: Variants detected represent multiple independent events          

and   reproduce   across   multiple   experiments. 
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For consistency, all samples used in the main analysis derive from a single bulk library               

preparation and sequencing run. To ensure that the observed trends are not the result              

of some bias specific to this single preparation, the entire process was independently             

repeated, with eleven different blood biopsies (Cohort 2).  a , Cohort 2 samples closely             

resembled averaged allele frequencies from the Cohort 1 (R-squared = 0.455316,           

p-value = 0.000000).  b , Comparing Cohort 2 samples against the VAF mean created             

from Cohort 2 samples produces a similar pattern to the same comparison using the              

Cohort 1 data (R-Squared = 0.615327, p-value = 0.000000).  c-d, Similar mutation            

patterns along captured regions were observed for Cohort 2 as for cohort #1 (Fig. 2e).               

e , To understand if observed variant frequencies are the result of clonal expansions or              

independent events, heterozygous variants were separated by allele. The logic behind           

this analysis is that if independently captured variants result from the same original             

event (i.e. a clone), then these variants should be found on the same allele.              

Alternatively, if variants result from independent events, then such variants should be            

frequently found on both alleles. By following linkage between variants and           

heterozygous SNPs, the two alleles can be distinguished. Shown here are the allele             

frequencies of variants found on either Allele 1 along the x-axis or Allele 2 along the                

y-axis (analyses are restricted to genomic segments from individuals containing          

heterozygous SNPs). As the variants adhere to a y=x line, they appear randomly             

distributed between both alleles, suggesting that variants detected represent multiple          

independent   events   rather   than   clonal   expansions. 
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Extended Data Figure 4: Triplet prevalence in probed regions does not sufficiently            

explain   base   bias. 

To understand how representative our total captured region was of the overall human             

genome, the trinucleotide sequence counts  a , found within our 32 probes was            

compared to  b , the overall trinucleotide counts found within hg19. CpG sites were less              

prevalently mutated in our samples than previously observed in other tissues and            

cancers. The lower incidence numbers of CpG mutations does not appear to be due to               

any effect of undersampling within our selected probe regions, as shown by  c , the fold               

difference in the number of triplets found in our probed region and in the hg19 reference                

genome.   Note   that   these   analyses   are   of   total   sequence,   not   identified   variants. 

 

Extended   Data   Figure   5:   Multiple   positions   show   nonrandom   base   bias. 

Not only is there significant conservation in the bases to which a position will change               

across individuals, but many locations are only observed to mutate to a single base. To               

understand the likelihood of this pattern arising due to random chance, every instance             

of a given substitution was quantified for each probed site across all individuals. These              

changes were used to derive an overall probability that each base would change to any               

of the other 3 bases if mutated. Using a chi-squared algorithm to test goodness of fit,                

individual probabilities were computed for the base substitution pattern observed at           

each base locus. These probabilities were then multi-comparison corrected using          

Bonferroni correction, separated by reference base, ordered in descending order, and           

plotted here. When a variant was only observed in a small number of individuals, the               
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probability of this change exclusively occurring at a given location due to chance was              

relatively high, resulting in a substantial number of non-significant loci ( a-d ; p values             

~1). Plotting only positions exhibiting significant bias reveals a substantial number of            

bases that predictably mutate across individuals in a manner unlikely to be explained by              

chance ( e-h ; p values that approach zero lack bars). The total number of variants              

passing significance for each base are: A) 27 C) 23 G) 51 T) 44. This suggests that                 

sequence context and base location may both be playing significant roles in determining             

the   substitution   probabilities   for   a   number   of   base   positions   throughout   the   genome. 

 

Extended Data Figure 6: Blood shows previously identified signatures but is           

different   from   cancers 

a , We focused on the amplicons in coding regions, and integrated Pan cancer somatic              

mutation data from exome sequencing in the TCGA to analyze patterns of base             

substitutions at genomic positions in the target regions which were mutated in both             

blood and tumor genomes. Substitution frequency and substitution patterns were both           

significantly different between blood and tumors, both at highly mutated sites (mutation            

count > 10; Chi square test; FDR adjusted p-value <0.05) and across all such sites               

(Mantel test; p-value < 1e-5), with substitution patterns in tumor genomes being more             

skewed. It is possible that selection during cancer evolution (as opposed to nearly             

neutral evolution in terminally differentiated blood cells) contribute to the observed           

patterns.  b , Integrating trinucleotide contexts of the substitutions, we determined the           

contributions of different mutation signatures previously identified. Out of 30 previously           
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identified signatures, our data showed overrepresentation of only 7 of them (Signatures            

3, 4, 8,12, 20, 22 and 30) across different samples. Out of seven signatures, Signature               

12, 3 and 4 had maximum contributions. Signature 3 and 4 are known to be associated                

with failure of DNA double stranded break repair by homologous repair mechanism and             

tobacco mutagens respectively, whereas the aetiology of Signature 12 remains          

unknown.  c , There was no systematic difference in mutation signatures between           

amplicons when grouped by their genomic context, and they also showed similar            

pattern of enrichment of few signatures as compared to others, with signature 12, 3 and               

4 having maximum contributions. Signature 12 and 4 exhibits transcriptional strand bias            

for T>C and C>A substitutions respectively, whereas signature 3 is associated with            

increased   numbers   of   large   InDels. 

 

Extended   Data   Figure   7:   Oncogenic   mutations   do   not   show   evidence   of   selection. 

As shown in Fig. 2f, known oncogenic mutations within probed regions do not show              

evidence of positive selection. Shown here are additional probed oncogenic loci           

according the their observed VAFs across donor ages, which also do not show an              

increase   in   variant   allele   frequency   in   older   ages. 

 

Extended   Data   Figure   8:   MMR MT    VAFs   are   elevated   over   parental   frequencies. 

When compared to MMR sufficient HCT116 parental cell line genomic DNA, MMR            

deficient HCT116 cell DNA (R-Squared = 0.066023) contains substitution mutations at           

significantly elevated frequencies, as expected with DNA repair deficiencies (Fig. 3a-b).           
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Although most VAFs appear elevated within MMR deficient cells, the magnitude of            

increase was context dependent. Base substitutions altering  a-c ) C or G exhibited            

elevated allele frequencies in MMR MT cells, but substantially less compared to  d-f ) T or              

A   nucleotides,   which   exhibit   much   higher   VAFs   compared   to   parental. 

 

Extended Data Figure 9: Base bias for cord blood individual #2 resembles MMR MT             

Cells. 

As for comparisons of MMR MT and HCT116 parental cell lines, a cord blood donor              

showed a variant population that significantly deviated from expected VAFs (Fig. 3d).  a ,             

The mutation spectrum found within individual 2 fits to a linear regression line of              

y=1.9x+0.00004, from which it can be seen that variants are approximately twofold            

more prevalent than in the overall population average. Similar to the data in Extended              

Figure 8, base substitutions altering  b-d ) C or G nucleotides did not show elevated              

frequencies. As in the in the MMR MT cells,  e-g ) T or A changes appear at elevated                

frequencies. Data from individual 19 looked similar to the data shown here, but is not               

shown.  h , To ensure that the increased frequencies of variants are not the result of               

some experimental anomaly, the DNA from individuals #19 (not shown) and #2 was             

used in a second experiment. In the experimental repeat, the samples showed nearly             

identical mutational spectra, with similarly elevated levels of T or A changes.  i , T or A                

changes again appear at elevated frequencies in a similar manner to the first             

experiment. The deviating population fits a regression line of y=2.2x-9.6*10 -5 .  j ,           

Indicative of experimental repeatability, when samples were freshly captured and          
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sequenced using FERMI, the same individual was highly similar across experiments,           

and different individuals were less similar. R 2 values are calculated to include all             

variants,   including   germline. 


